๐๐ข๐ซ๐๐๐ญ ๐๐๐ค๐ ๐๐ฎ๐๐ซ๐๐ซ๐๐ข๐ฅ๐ฌ: ๐๐๐๐ง๐ญ๐ข๐๐ฒ ๐๐จ๐ญ๐๐ง๐ญ๐ข๐๐ฅ ๐ ๐๐ฅ๐ฅ๐๐๐๐ค๐ฌ ๐ฐ๐ข๐ญ๐ก ๐๐๐ฆ๐๐ง๐ญ๐ข๐ ๐๐ข๐ง๐ค ๐๐๐๐ฌ
๐
๐๐ฅ๐ฅ๐๐๐๐ค:
Power BI semantic models in Direct Lake mode read Delta tables directly from OneLake. However, if a DAX query on a Direct Lake model exceeds the SKU limits, the query can fall back to Direct Query mode, affecting query performance.
๐๐ง๐๐๐ซ๐ฌ๐ญ๐๐ง๐๐ข๐ง๐ ๐๐ข๐ซ๐๐๐ญ ๐๐๐ค๐ ๐๐ฎ๐๐ซ๐๐ซ๐๐ข๐ฅ๐ฌ:
Direct Lake guardrails define the resource boundaries within which Direct Lake mode operates optimally. When these limits are reached, Power BI switches to Direct Query to process DAX queries.
Key guardrails include: ๐ญ๐ก๐ ๐ง๐ฎ๐ฆ๐๐๐ซ ๐จ๐ ๐ฉ๐๐ซ๐ช๐ฎ๐๐ญ ๐๐ข๐ฅ๐๐ฌ, ๐ซ๐จ๐ฐ ๐ ๐ซ๐จ๐ฎ๐ฉ๐ฌ, ๐จ๐ซ ๐ซ๐จ๐ฐ๐ฌ ๐ฉ๐๐ซ ๐๐๐ฅ๐ญ๐ ๐ญ๐๐๐ฅ๐.
๐๐ข๐ซ๐๐๐ญ ๐๐๐ค๐ ๐๐ฎ๐๐ซ๐๐ซ๐๐ข๐ฅ๐ฌ ๐๐ก๐๐๐ค:
๐Consult the Microsoft documentation for detailed guardrails based on your Fabric SKU: https://learn.microsoft.com/en-us/fabric/get-started/direct-lake-overview#fallback
๐Also, you can use the SemanticLinkLabs and run the ๐ ๐๐ญ_๐๐ข๐ซ๐๐๐ญ_๐ฅ๐๐ค๐_๐ ๐ฎ๐๐ซ๐๐ซ๐๐ข๐ฅ๐ฌ()ย function to quicklyย view these guardrails, helping you understand when Direct Lake semantic models will fall back to Direct Query.
๐๐๐๐ง๐ญ๐ข๐๐ฒ ๐๐จ๐ญ๐๐ง๐ญ๐ข๐๐ฅ ๐
๐๐ฅ๐ฅ๐๐๐๐ค ๐๐๐๐ฅ๐๐ฌ ๐ฐ๐ข๐ญ๐ก ๐๐๐ฆ๐๐ง๐ญ๐ข๐ ๐๐ข๐ง๐ค ๐๐๐๐ฌ:
In the screenshot below ๐๐, I used the ๐๐๐ฆ๐๐ง๐ญ๐ข๐ ๐๐ข๐ง๐ค ๐๐๐๐ฌ, via the ๐ ๐๐ญ_๐ฅ๐๐ค๐๐ก๐จ๐ฎ๐ฌ๐_๐ญ๐๐๐ฅ๐๐ฌ() function to check if any lakehouse tables will hit the Direct Lake guardrails based on the SKU used by my Fabric workspace capacity.
The function retrieves the tables of a lakehouse and their respective properties relevant to Direct Lake guardrails๐
link: https://semantic-link-labs.readthedocs.io/en/stable/sempy_labs.lakehouse.html#sempy_labs.lakehouse.get_lakehouse_tables
โNote: You can disable fallback to DirectQuery mode if you want to process DAX queries in pure Direct Lake mode only.