Document your Power BI Semantic Model with INFO DAX Functions via the Semantic Link and Store Results in Fabric Lakehouse
I tested how to extract information from a Semantic Model by running INFO DAX functions, creating a comprehensive table and from this data and storting it in Fabric Lakehouse, to automate the generation of documentation for a Semantic Model.
Hereโs how I leveraged ๐๐๐ ๐ ๐๐๐ ๐ ๐ฎ๐ง๐๐ญ๐ข๐จ๐ง๐ฌ and ๐๐๐ฆ๐๐ง๐ญ๐ข๐ ๐๐ข๐ง๐ค:
1)ย ๐๐ฑ๐ญ๐ซ๐๐๐ญ ๐๐๐ญ๐๐๐๐ญ๐ ๐ฐ๐ข๐ญ๐ก ๐๐๐
๐ ๐๐๐ ๐
๐ฎ๐ง๐๐ญ๐ข๐จ๐ง๐ฌ:
INFO DAX functions allow you to extract valuable metadata about your model, including tables, columns, relationships, and measures (using function like INFO.TABLES, INFO.COLUMNS, INFO.RELATIONSHIPS, INFO.MEASURES)
I Created a DAX query that merge information from theses functions, to craft a comprehensive documentation view of the semantic model.
2) ๐๐ฌ๐ ๐ญ๐ก๐ ๐๐๐ฆ๐๐ง๐ญ๐ข๐-๐๐ข๐ง๐ค ๐ฅ๐ข๐๐ซ๐๐ซ๐ฒ ๐ญ๐จ ๐๐ฎ๐ง ๐๐๐ ๐๐จ๐๐ :
Consider using the Semantic Link library to execute DAX queries within the evaluate_dax() function.
Using the the ๐๐๐ฆ๐๐ง๐ญ๐ข๐-๐๐ข๐ง๐ค within a Fabric Notebook, I Integrated the INFO DAX query inside the ๐ฒ๐๐ฎ๐น๐๐ฎ๐๐ฒ_๐ฑ๐ฎ๐
() ๐ณ๐๐ป๐ฐ๐๐ถ๐ผ๐ป,
3) ๐๐ญ๐จ๐ซ๐ ๐ญ๐ก๐ ๐๐๐ง๐๐ซ๐๐ญ๐๐ ๐๐๐ ๐๐ฎ๐๐ซ๐ฒ ๐๐๐ฌ๐ฎ๐ฅ๐ญ๐ฌ ๐ข๐ง ๐
๐๐๐ซ๐ข๐ ๐๐๐ค๐๐ก๐จ๐ฎ๐ฌ๐:
I stored the generated results in Delta tables inside a Fabric Lakehouse using PySpark code, for future analysis automating fresh documentation.
๐๐Explore the full potential of INFO DAX functions to create detailed Power BI documentation. These functions, combined with the Semantic Link library, offer a powerful way to automate and enrich your Power BI documentation, providing insightful and up-to-date documentation for your semantic models.๐๐
๐Examples using the new 'INFO' DAX functions by Michael Kovalsky: https://lnkd.in/etaHYMUj